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In the sophisticated realm of big data, analyzing energy efficiency in Indonesia has 

become crucial for identifying savings opportunities. This study analyzes and 

forecasts energy efficiency across various Indonesian provinces by using advanced 

regression techniques in machine learning—Support Vector Regression, Artificial 

Neural Network, and Random Forest. We utilize large-scale raster data, including 

carbon dioxide (CO2) emissions from the OCO-2 (Orbiting Carbon Observatory-2) 

GEOS satellite, nocturnal satellite images from the Visible Independent Imaging 

Radiometer Suite (VIIRS), and demographic and infrastructural data from 

WorldPOP and EsriWorld Cover. The analysis results highlight a notable increase 

in CO2 emissions from 2019 to 2023, with a significant reduction in night-time light 

emissions in 2020 due to the pandemic, which temporarily decreased human 

activities. Despite these fluctuations, the continuous increase in population density 

and built-up areas underscores the persistent influence of urbanization on 

emissions. The Random Forest model, which provided the most accurate 

predictions, showed a 65% increase in total CO2 emissions by 2030, driven by 

urbanization and economic growth, followed by a decline by 2045 due to targeted 

government policies. These insights contribute significantly to understanding the 

distribution of energy efficiency and support the development of sustainable energy 

policies in Indonesia. The study not only enriches scientific literature but also 

guides policy-making, offering a framework for tailored energy efficiency 

improvements. This research marks a pivotal advancement in utilizing big data and 

satellite technology to optimize energy use in a context that was previously 

underexplored.   
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1.  Introduction  

 

Energy is crucial for economic and social development and is closely linked to improving quality of 

life (Bologna, 2013; Ibrahim et al., 2023; Lloyd, 2017). It is also a key focus of the Sustainable 

Development Goals (SDGs), as it supports poverty alleviation, education, health, industrialization, and 

water supply (Santika et al., 2019; United Nations, 2016). However, most global energy production and 

consumption remains unsustainable, causing increases in energy use and carbon dioxide (CO2) 

emissions (Ibrahim et al., 2023; Miškinis et al., 2014; Zakari et al., 2022). 
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Urbanization has transformed cities worldwide, with 55% of the global population now residing in 

urban areas. This shift drives social and economic changes and heavily impacts energy consumption, 

as urban areas account for about 80% of global energy use (Bilgili et al., 2017; Lee et al., 2013; Min et 

al., 2022; Nejat et al., 2015). Previous research shows a close link between urbanization and high energy 

consumption, influenced by factors like human activity intensity, population density, and land 

expansion (Elliott et al., 2017; Guan & Zhou, 2015; Jones, 1991; Papa et al., 2014; Zhao & Zhang, 

2018). Factors such as the intensity of human activity (Fehrer & Krarti, 2018; Hipskind et al., 2011), 

population density (Mazur, 1994; Zarco-Periñán et al., 2021), and the expansion of built-up land (Hu 

& Fan, 2020; Polydoros & Cartalis, 2015) have been identified as primary drivers of increased energy 

consumption in urban areas. High energy consumption also significantly contributes to the rise in CO2 

emissions (Jian et al., 2021; Peters et al., 2007; Vieira & Ceretta, 2021). CO2 is one of the gases most 

implicated in global pollution and is a key factor in causing the greenhouse effect, which contributes to 

global climate change (Romero-García et al., 2022). However, there is potential to reduce urban energy 

consumption by up to 50% by 2050 by improving energy efficiency and promoting energy-saving 

behaviors among the public (Min et al., 2022; Svenfelt et al., 2011; Ürge-Vorsatz et al., 2012).  

 

The concept of energy efficiency is increasingly emphasized as a crucial aspect of achieving sustainable 

development (Di Foggia, 2018; Soltangazinov et al., 2020; Zakari et al., 2022). Energy efficiency is a 

measure of how effectively and efficiently energy is used to produce the desired output. (Lin & Zhai, 

2023). The higher the energy efficiency, the less energy is required to produce the same amount of 

output (Milovanovic et al., 2012; Wang et al., 2023), thereby reducing energy use, costs, greenhouse 

gas emissions, and CO2 air pollution. Various studies have consistently shown that higher energy 

efficiency generally results in lower CO2 emissions (Longa et al., 2022; Tajudeen et al., 2018; Tu et al., 

2022). Many studies have examined the link between energy efficiency and CO2 emissions, focusing 

on urbanization's role. Ma et al. (2014) and Sun & Huang (2020) noted the need for more detailed data 

to estimate CO2 emissions from transport accurately and understand urbanization’s impact on carbon 

efficiency. Nuţă et al. (2021) and Zhang & Lin (2012) further emphasized the importance of considering 

the impacts of urbanization and related energy factors on CO2 emissions. However, using CO2 emission 

estimates to assess energy efficiency, as suggested by Guo et al. (2022), requires further research. 

Accurately mapping CO2 patterns in space and time is essential for informed carbon reduction policies, 

but data limitations often restrict studies to large-scale models (Guo et al., 2022; Wang & Liu, 2017). 

Most research relies on administrative data, which lacks internal spatial patterns (Cao et al., 2014). 

 

Several studies have attempted to investigate energy consumption and efficiency in Indonesia. For 

instance, Jafari et al. (2012) explored the relationship between economic growth, CO2 emissions, and 

energy consumption from 1971 to 2007 using official statistical data from Indonesian government 

institutions on a linear logarithmic specification within a causality framework. Another study by Cahyo 

et al. (2023) aimed to identify the environmental, population, and economic impacts on CO2 emissions 

in Indonesia from 1990 to 2021, employing multiple linear regression analysis with numeric data from 

various international organizations and the Central Bureau of Statistics. Although both studies provide 

valuable insights, they are limited by their reliance on conventional numerical data and statistical 

techniques, which have inherent weaknesses compared to more modern methods like Machine Learning 

(ML) algorithms. A recent 2023 study in Indonesia took a novel approach by using spatial data, such 

as satellite imagery. Swardika and Santiary (2023) attempted to model past energy consumption patterns 

spatially (location) and temporally (year) using nighttime satellite dataset. The modelling technique 

used was curve-fitting, evaluating indicators through R-squared (R2) and Root Mean Square Error 

(RMSE) values. However, this study's limitation lies in its inability to predict future energy 

consumption, only identifying and modelling patterns or relationships in data plotted as curves or 

graphs. Additionally, Farida et al. (2023) analyzed factors influencing CO2 emissions in Indonesia and 

projected an increase up to 2030 using the econometric method Vector Error Correction Model 

(VECM). The findings suggest that energy consumption is a primary factor contributing to the rise in 

CO2 emissions, with an estimated increase of 65% from 2020 to 2030 in Indonesia. These results 

underscore the potential for developing more sophisticated models to understand, predict, and manage 

energy consumption in Indonesia, especially through innovative approaches such as ML. 
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With the rapid development of networks, data storage, and data collection capabilities, Big Data has 

swiftly expanded across all fields of science and engineering (Su et al., 2020). Numerous studies have 

explored the use of Big Data, including satellite imagery, to estimate CO2 emissions and energy 

efficiency (Baldwin et al., 2017; Falchetta & Noussan, 2019; Townsend & Bruce, 2010). These data 

sources offer solutions for gathering electricity and energy-related data at small scales and low costs. 

Recent advancements in the energy sector are propelled by the utilization of Big Data and advanced 

analytical methods such as ML. Various ML algorithms have been applied to predict energy 

consumption with varying degrees of success. Wu & Chu (2021) found that the random forest algorithm 

was most effective for constructing energy consumption predictions, while Islam et al. (2023) evaluated 

energy consumption from various ML classifier algorithms, recommending Gaussian Naive Bayes as 

the most effective. Mohapatra et al. (2021) provided a comprehensive review of computational 

intelligence approaches for energy consumption prediction, highlighting the potential of ML and deep-

learning models in predicting energy consumption.  

 

To the best of our knowledge, the utilization of big data technology and ML algorithms for estimating 

and predicting energy efficiency in lighting within Indonesia remains relatively limited. Previous 

studies have fallen short in evaluating and forecasting energy efficiency, particularly in the context of 

urbanization, as well as the use of Big Data and ML approaches in future modelling. Typically, 

assessing energy efficiency in lighting levels necessitates expensive energy audits. This underscores the 

need for in-depth research in this area to comprehensively understand the dynamics of energy efficiency 

in Indonesia. 

 

Therefore, our study aims to fill these gaps. Our novel study refines the literature insights on energy 

efficiency modelling in Indonesia. We focus on evaluating past dynamics of energy efficiency and 

forecasting future trends by leveraging Big Data and ML approaches. This approach will form an 

integral part of the data collection and analysis process in this research, and this is expected to provide 

deep and detailed insights into energy efficiency from the past to the future across various provinces in 

Indonesia. The uniqueness of this research lies in its further contribution to the literature on energy 

efficiency modelling. The outcomes of this study are expected to enhance understanding of regional 

disparities in energy efficiency in both temporal and spatial terms and provide a robust scientific basis 

for formulating effective CO2 emission mitigation policies aligned with the energy efficiency 

characteristics of each province, prioritizing the most critical efforts. 

 

2.  Methods and Materials 

 

This study is a quantitative research that focuses on the application of several algorithms and statistical 

models in the domain of ML. The ultimate goal of this research is to predict future energy efficiency 

levels with factors from urbanization (human activity intensity, population density, and built-up land 

development), thereby formulating policy recommendations related to development and efforts to 

mitigate CO2 emissions in various provinces in Indonesia. The prediction process is carried out based 

on the best model generated from several ML algorithms, including SVM, ANN, and RF. These 

algorithms allow computers to learn from data without needing explicit instructions. The integration of 

these algorithms is done using the Google Colab platform. Analysis and predictions are conducted for 

all provinces in Indonesia. As one of the largest countries in the world, human activity patterns, 

population, and energy consumption in Indonesia vary greatly among provinces and regions. Therefore, 

a comprehensive analysis of CO2 emissions is needed to formulate appropriate policies. 

 

2.1 Data Collection 

 

Data plays a crucial role in research as it forms the foundation of structured and essential information. 

However, conventional data tends to have several limitations, such as scope and detail limitations, 

delays in availability, as well as costs and difficulties in collection. Additionally, conventional data 

often has rigid formats, making it difficult to integrate with other data or analyze using modern analysis 

methods such as ML or spatial analysis. Conversely, with technological advancements and the 

widespread use of Big Data, researchers, as well as urban and regional planners, are beginning to 
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understand the importance of Big Data in uncovering temporal and spatial patterns related to urban and 

regional contexts, including energy consumption patterns and carbon emissions. Based on this 

justification, an attempt has been made to focus on the utilization of Big Data by collecting various 

digital data sources. The details of the dataset used will be elaborated in detail in Table 1 and visualized 

in Figure 1.  

 

The data extracted from WorldPOP for the years 2021–2023 is the result of extrapolation from previous 

years. Subsequently, due to varying resolutions of the extracted data, an upscaling process was 

performed to standardize the resolution to 1000 meters. Thus, the data is prepared for analysis at the 

raster level. 

 

 

Figure 1. Research spatial data (from 2019–2023), a) CO2 emissions; b) NTL; c) Built up area;  

d) Population. 
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Table 1. Research dataset. 

Data Data source Remarks 

Administrative 

boundaries 

Indonesian Geospatial 

Information Agency 
▪ Data accessed on November 2023  

Human 

activities  

Night-time Light 

Imagery (NTL) 

▪ VIIRS, Annual NTL (2019–2023)  

▪ Data accessed on 15 April 2024 and 

downloaded at 

https://eogdata.mines.edu/products/vnl/#v1 

Population 

density 
WorldPOP 

▪ Population density, resolution 1km (2019–

2020, 2021–2024 extrapolated) 

▪ Data accessed on 15 April 2024 and 

downloaded at 

https://www.worldpop.org/datacatalog/ 

Built-up land Esri Land Cover ▪ Sentinel-2, 10-Meter Land Cover 

▪ Data accessed on 15 April 2024 and 

downloaded at 

https://livingatlas.arcgis.com/landcover/ 

CO2 emissions The OCO-2 Satellite by 

NASA's Goddard Space 

Flight Center  

▪ Spatial resolution: 0.5 ° x 0.625 ° 

▪ Data units: Parts per million (ppm) 

▪ Data accessed on 15 April 2024 and 

downloaded at 

https://earth.gov/ghgcenter/data-

catalog/oco2geos-co2-daygrid-v10r 

 

2.2 Analysis Process 

 

The data generated from various digital data sources is raw data that is not yet ready for further analysis, 

thus requiring a preprocessing or pre-analysis stage. The preprocessing stage is a process performed on 

data before it is processed by an algorithm or model. The goal of the preprocessing stage is to clean, 

normalize, and transform raw data into a format that is easier to understand and can be processed by a 

model. One of the preprocessing stages that will be undertaken is Zonal Statistics, which is a spatial 

analysis technique for calculating statistics within a specific area (zone) by considering the pixel values 

or spatial grid data within that area (Singla & Eldawy, 2020; Erdem et al., 2021). This technique is 

applied to various dependent and independent factors in this study, including human activity intensity, 

population density, built-up land development, and CO2 emissions, to generate statistical information 

such as averages in each zone (Figure 2). 

 

After the preprocessing stage, the next step involves ML using three different algorithms or models, 

namely SVM, ANN, and RF. After modelling using these three algorithms, the model evaluation 

process is conducted by considering the RMSE and Standard Deviation values. RMSE is a commonly 

used metric in statistics and ML to evaluate the accuracy of a model (Chai & Draxler, 2014). Models 

with the smallest RMSE are generally considered the best models (Chai & Draxler, 2014; Mentaschi et 

al., 2013; Moriasi et al., 2007; Singh et al., 2005). Meanwhile, Standard Deviation is used to measure 

how far data is spread out from its mean value in a data distribution. The result provides information 

about the variability or diversity of the data. In other words, standard deviation provides information on 

how much dispersion or difference there is between each data point and the mean value. The larger the 

standard deviation, the greater the variability in the data, and vice versa (Pfeiffer, 1990). 

 

The next step is to predict energy efficiency until 2045 using historical growth data from the three 

independent variables and using the best-performing algorithm model based on RMSE and standard 

deviation values. The entire modelling process in this research utilizes the Google Colab platform. 

Google Colab is a free cloud platform that allows users to write and run Python code in a web browser. 

This platform eliminates the need for complex local installation and configuration, thus saving time and 

resources. The main advantage of Google Colab is the utilization of Google's advanced cloud 
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infrastructure to accelerate intensive computing, such as ML model training and large-scale data 

analysis. The analysis process is detailed through the research framework in Figure 3. 

 

 

Figure 2. CO2 Emissions zonal statistics. 

 

 

Figure 3. Conceptual research framework. 
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3.  Results and Discussions 

 

3.1 Dynamics of Energy Consumption Factors Development 

 

In the last five years, the development of energy consumption factors has shown diverse dynamics. 

Analyzing the trends in energy consumption during this period is important for understanding patterns 

and their implications for the sustainability of energy resources and the environment. Figure 4 is a 

visualization in the form of a graph depicting the dynamics of the development of energy consumption 

factors. 

 

 
Figure 4. The average development of each variable from 2019 to 2023, a) Average CO2 emissions; 

b) Average built-up areas; c) Average NTL intensity; d) Average population. 

 

Figure 4 depicts the visualization of the development of CO2 emissions and several associated factors, 

including built-up area, nighttime light intensity, and population. It is known that all the aforementioned 

variables exhibit diverse trends. CO2 emissions show an increase each year. In contrast, the other two 

factors, namely built-up area and population, tend to experience a stable and sustainable increase from 

year to year. Meanwhile, the human activity factor tends to fluctuate. 

 

3.2 The Correlation Among Variables 

 

The following section presents a correlation analysis between CO2 emissions and three key factors: 

built-up area, human activity, and population. By examining these relationships, we aim to gain insights 

into the extent and nature of the correlation between CO2 emissions and each factor. This analysis 

enables us to assess whether increases in built-up area, nighttime light intensity, or population size have 

a positive, negative, or negligible association with CO2 emissions. 

 

Figure 5 illustrates a heatmap visualization depicting the correlation between CO2 emissions and the 

three factors (built-up area, human activity, and population) from 2019 to 2023. Each cell in the heatmap 

represents the correlation coefficient between two variables, with a color scale indicating the strength 

of the correlation, where blue indicates low values and red indicates high values. From the heatmap 

above, it can be observed that in 2019, the correlation of variables with CO2 emissions ranged from 

0.598 to 0.628. This indicates a relatively strong relationship, signifying that CO2 emissions have a 

positive and significant correlation with built-up areas, human activity, and population. This 

relationship suggests that an increase in one variable tends to be followed by an increase in the other 

variables. The same relationship is identified in the following year, 2020. 
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Figure 5. Visualization of the average development of each variable from 2019–2023. 

 

However, there is a shift in the trend in the years 2021–2023. In 2021, the correlation coefficient of 

variables decreases to approximately 0.267–0.289. In 2022, the correlation continues to decrease to very 

low values, only around 0.048–0.084. In 2023, the correlation tends to reverse, with a negative 

correlation value for built-up area with CO2 emissions at around -0.0112 and almost no correlation for 

human activity and population variables. 

 

These shifts in correlation could be attributed to several other factors such as changes in economic 

conditions or policies, for example, significant changes in industrial or energy sector policies affecting 

CO2 emissions. Additionally, there may be influences from extraordinary events such as pandemics, 

natural disasters, land, forest, and peat fires, or other events that alter normal human activity patterns. 

This underscores the importance of considering external context and data quality when drawing 

conclusions from correlations.  

 

3.3 Energy Efficiency Modelling 

 

Before predictions can be made, ML builds a model to predict CO2 emissions using three factors 

including building area, human activity and population. The data used to train this model is from 2019 

to 2022, and the validity of the model was tested using 2023 data. ML carried out the steps taken to 

train the model, including: 

 

a. Data preparation for training, including separating feature data and target data. 

b. Training on three types of models, namely RF, SVM, and ANN. 

c. Validate the model using cross-validation techniques to ensure the model performs well on 

unseen data. 

d. Produce an evaluation and comparison of model performance to determine which is most 

suitable. 

 



45 

 

 

Indonesian Journal of Energy Vol. 8 No. 1 (2025) 37 – 61 

The prepared data is then divided into training and testing sets, with a ratio of 30 samples for training 

and 8 samples for testing. Cross-validation was then performed to evaluate the performance of each 

model and produce the mean RMSE and standard deviation for each model, as in Table 2.  

 
Table 2. RMSE and Standard Deviation of RF, SVM, and ANN Models. 

Model RMSE Standard Deviation 

Random Forest 4,78×10−7 1,26×10−7 

Support Vector Machine (SVM) 5,69×10−7 1,10×10−7 

Artificial Neural Network (ANN) 13,76 20,26 

 

Table 2 shows that the RF model consistently performs well on each sample of the research dataset due 

to having the lowest RMSE compared to the other models. The SVM model is also good but still 

performs worse than the RF model. Meanwhile, the ANN model tends to be less stable and not suitable 

for the data in this study compared to the other two models. Based on this modelling, it is concluded 

that the RF model is the best choice for predicting CO2 emissions based on built-up area, human activity, 

and population factors. This is because it has better stability and accuracy compared to the other models.   

 

3.4 Energy Efficiency Prediction 

 

Based on the modelling conducted, the RF model appears to be the best choice for predicting CO2 

emissions based on the variables of human activity, population density, and built-up area. The RF model 

offers a good combination of accuracy and stability. To predict CO2 emissions per province for future 

years, including 2025, 2030, 2035, 2040, and 2045 using the RF model, it is necessary to consider how 

to protect the values of independent variables (human activity, population density, and built-up area) 

for those years. An approach that can be used is data extrapolation, which involves estimating variable 

values based on existing trends. 

 

The next step is to estimate the values of the independent variables (human activity, population density, 

and built-up area) for future years based on the annual average growth from the available data. First, 

the annual average growth for each feature from 2019 to 2023 will be calculated and then used to project 

these values for the years 2025, 2030, 2035, 2040, and 2045. After that, the trained RF model will be 

used to predict CO2 emissions based on the projected values.  

 

Figure 6 displays the projection of total CO2 emissions from all provinces from 2025 to 2045. As 

observed, there is a tendency to increasing total CO2 emissions from 2025 to 2030, followed by a stable 

decline from 2030 to 2045, according to the RF model predictions. Meanwhile, the analysis of the trend 

of predicted CO2 emissions per province, as shown in Figure 7, reveals that only two provinces in 

Indonesia experience an increase in CO2 emissions. Four other provinces are projected to experience a 

significant decrease in CO2 emissions, namely North Sumatra, West Sumatra, South Kalimantan, and 

Riau Islands. Meanwhile, other provinces show fluctuations or stagnation in CO2 emission rates. 

 

Figure 8 displays the average growth of CO2 emissions per province. From the analysis results, it is 

revealed that provinces showing positive average growth or the highest increase in CO2 emissions are 

generally located in the eastern regions of Indonesia, such as South Papua, Highlands Papua, East Nusa 

Tenggara, and Maluku. On the other hand, provinces showing negative average growth or a decrease in 

CO2 emissions include North Sumatra, South Kalimantan, and Riau Islands. 
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Figure 6. Total Predicted CO2 emissions from 2025–2045. 

 

Figure 7. Predicted CO2 emissions per province categorized by trends. 
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Figure 8. Average growth in CO2 emissions per province. 

 

3.5 Discussion 

 

Based on the data on CO2 emissions development in various provinces in Indonesia from 2019 to 2023, 

there is a noticeable upward trend in emissions. However, upon further analysis, only the human activity 

factor shows a decline, particularly evident from the decrease in nighttime light values in 2020, which 

can be attributed to the COVID-19 pandemic drastically reducing human activity. Meanwhile, factors 

such as population density and built-up area show stability in their increase during this period. This 

indicates a positive relationship between population growth and built-up area expansion, affirming the 

ongoing urbanization dynamics in Indonesia, where population growth often impacts built-up land 

expansion. 

 

We have attempted to model and predict CO2 emissions as a proxy for energy efficiency in Indonesia. 

Our results indicate that the RF algorithm is the best model capable of capturing the dynamics of CO2 

emission-producing factors in Indonesia from various aspects of urbanization. The prediction results 

show that total CO2 emissions tend to increase from 2025 to 2030. This is indicative of the direct impact 

of urbanization and rapid economic growth, such as the growth of human activity, population density, 

and land development, which also increase over time, directly contributing to CO2 emissions. These 

findings are also consistent with research conducted by Farida et al. (2023), where econometric models 

predicted a 65% increase in CO2 emissions from 2020 to 2030 in Indonesia. However, interestingly, 

after peaking in 2030, our research using the RF model predicts that total CO2 emissions will gradually 

decline until 2045.  

 

The decline is indicated by various government policies in Indonesia aimed at reducing CO2 emissions, 

particularly in the context of urbanization. At the Conference of the Parties (COP) 26 or COP26 

Glasgow, Indonesia reaffirmed its commitment to achieve Net Zero Emissions by 2060 or even earlier, 

and in response, the government has implemented various policies. The Ministry of Public Works and 

Housing, for example, has committed to reducing carbon emissions through sustainable construction 

practices and the development of green infrastructure. Furthermore, Ministerial Regulation Number 14 

of 2021 has been enacted to implement Minimum Energy Performance Standards (MEPS) for energy-

using equipment, with the aim of improving energy efficiency and providing information to users about 
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energy-efficient equipment. This regulation, along with Ministerial Decree No. 

135.K.EK.07/DJE/2022, establishing minimum energy performance standards and energy-saving labels 

for LED lamps, is intended to prevent inefficient household appliance products from entering the 

Indonesian market, with a primary focus on energy savings. 

 

Additionally, there is an energy transition that will gradually reduce the use of coal and promote the 

development of power plants from renewable energy sources. The Indonesia Green Growth Program, 

initiated by the government together with the Global Green Growth Institute (GGGI) and the Ministry 

of National Development Planning (BAPPENAS), supported by several ministries and local 

governments, aims to promote green growth and increase investment in renewable energy projects and 

energy efficiency, with the hope of creating innovative and creative financing schemes. However, 

investments related to renewable energy still tend to be concentrated in the Kalimantan and Nusa 

Tenggara regions. 

 

Our predictive results align with various statements in global studies stating that energy demand or 

consumption can be reduced by up to 50% before 2050 by improving energy efficiency and promoting 

energy-saving behaviors (Min et al., 2022; Svenfelt et al., 2011; Ürge-Vorsatz et al., 2012). The concept 

of energy efficiency has been widely promoted as one of the indicators for achieving sustainable 

development (Di Foggia, 2018; Soltangazinov et al., 2020; Zakari et al., 2022). The International 

Renewable Energy Agency has also emphasized that, in response to climate change, many countries 

have developed ambitious renewable energy plans to achieve zero net emissions goals by 2050 

(International Renewable Energy Agency, 2018), including Indonesia. Kusumadewi & 

Limmeechokchai (2015) showed that by implementing various energy efficiency scenarios in 

Indonesia, energy can be saved by 27.6% of total energy demand in 2050, while cumulative CO2 

emissions can be reduced by 16% of total CO2 emissions in 2050.  

 

Figure 9 illustrates the pattern of CO2 emissions development across various provinces in Indonesia. In 

2045, the highest CO2 emissions are found in North Kalimantan, East Kalimantan, Central Kalimantan, 

Central Sulawesi, Maluku, North Maluku, West Papua, and Papua. This indicates that the lowest energy 

efficiency is found in those 9 provinces. It can be observed that the highest emission levels in the final 

year of the prediction are generally located in Kalimantan Island and the eastern regions of Indonesia. 

However, upon examining the analysis of the CO2 emission prediction trends per province, it is noted 

that only two provinces experience an increase in CO2 emissions, namely Papua and South Papua. This 

highlights the differences in emission dynamics between provinces. More interestingly, it was found 

that four other provinces are expected to undergo a significant reduction in CO2 emissions, namely 

North Sumatra, West Sumatra, South Kalimantan, and Riau Islands. One justification for this 

phenomenon is that the decrease in CO2 emissions in these four provinces may be due to local policies 

or initiatives to reduce deforestation or convert degraded land, along with more aggressive mitigation 

efforts in the energy or plantation sectors (especially palm oil). Provinces showing fluctuations or 

stagnation in CO2 emission levels require higher policy support to achieve CO2 reduction. A thorough 

evaluation of the implemented policies is needed, involving an assessment of the effectiveness of 

current policies and adjustment of strategies to better align with national CO2 reduction goals. Inter-

provincial cooperation can also be enhanced through the exchange of knowledge and experiences in 

addressing CO2 emission-related challenges, allowing these provinces to learn from each other and 

improve their performance in reducing CO2 emissions. 

 

When considering their average growth rates, provinces in eastern Indonesia, such as South Papua, 

Papua Highland, East Nusa Tenggara, and Maluku, tend to exhibit positive growth in CO2 emissions. 

This is indicated by the challenges these regions may face in controlling CO2 emissions, such as rapid 

infrastructure development, land conversion leading to deforestation, or intensive industrial growth that 

heavily relies on energy consumption. This aligns with previous studies, emphasizing the crucial role 

of energy in accelerating economic and social development, particularly in areas with limited 

infrastructure and economic development (Bologna, 2013; Ibrahim et al., 2023; Lloyd, 2017). On the 

other hand, there are provinces showing negative average growth or decline in CO2 emissions, including 

North Sumatra, South Kalimantan, and Riau Islands. This decrease in CO2 emissions may be related to 
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the implementation of pro-environment policies or the adoption of green economy practices in the 

energy sector. 

 

 
Figure 9. CO2 Emission prediction based on RF algorithm. 

 

This study also underscores the importance of considering urbanization factors such as human activities, 

built-up areas, and population density in designing CO2 emission mitigation policies. With rapid 

urbanization, human activities in urban areas become the primary contributors to CO2 emissions. 

Therefore, policies aimed at more efficient built-up land management and sustainable urban 

development can help reduce their negative impact on the environment and carbon emissions. 

Additionally, increased population density in urban areas demands careful planning to provide efficient 

public transportation, green infrastructure, and environmentally friendly public services to reduce 

reliance on private vehicles and fossil fuels, ultimately aiding in significant CO2 emission reduction. 

 

4.  Conclusions 

 

Our study represents a pioneering effort, showcasing the effectiveness of big data technology and 

machine learning algorithms in predicting and modelling energy efficiency across different provinces 

in Indonesia. The research findings indicate that the RF algorithm performs the best based on its low 

RMSE compared to the SVM and ANN algorithms. The predictions show a trend of increasing CO2 

emissions until 2030, followed by a stable decrease until 2045, reflecting the effects of urbanization 

and varied energy policy implementations across provinces. 

 

As a contribution, our research reinforces the importance of adaptive and regionally-based policies in 

managing energy efficiency in Indonesia. The study suggests that with the right approach to data 

collection and predictive modelling, a deeper understanding of how to significantly improve energy 

efficiency, thereby reducing CO2 emissions, can be achieved. Implementing policies based on the 

results of these models will help Indonesia not only meet its global emission reduction commitments 

but also promote broader sustainable development. 

 

Although providing valuable insights, this study has several limitations that may affect the accuracy 

and applicability of its findings. One major limitation is the use of limited datasets, which may not fully 

represent real-world conditions due to constraints in socio-economic variables and ongoing government 

policy influences. These limitations potentially affect the accuracy of the developed model predictions. 

Given these shortcomings, future research should aim to expand the availability and diversity of data 

and incorporate other variables that may influence energy efficiency. More complex modelling 

approaches are also recommended to accommodate more dynamic interactions between different 
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variables. Implementing these models would significantly support the formulation of more adaptive and 

effective energy policies, particularly in adjusting to the specific conditions and needs of each province. 
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Appendix 
 

Appendix A (Data) 

 

Province 

Average of CO2 Emission Average of Built Up Area 

CO2_2

019 

CO2_2

020 

CO2_2

021 

CO2_2

022 

CO2_2

023 

BuiltUp_2

019 

BuiltUp_2

020 

BuiltUp_2

021 

BuiltUp_2

022 

BuiltUp_2

023 

Nusa Tenggara Timur 0,00041 0,00041 0,00041 0,00041 0,00042 0,01662 0,01707 0,01767 0,01830 0,01879 

Kalimantan Timur 0,00041 0,00041 0,00041 0,00041 0,00042 0,00445 0,00490 0,00534 0,00576 0,00614 

Jambi 0,00041 0,00041 0,00041 0,00042 0,00042 0,01051 0,01126 0,01216 0,01283 0,01367 

Kalimantan Barat 0,00041 0,00041 0,00041 0,00042 0,00042 0,00474 0,00495 0,00522 0,00545 0,00576 

Bengkulu 0,00041 0,00041 0,00041 0,00041 0,00042 0,01387 0,01456 0,01516 0,01620 0,01695 

Sumatera Utara 0,00041 0,00041 0,00041 0,00042 0,00042 0,03226 0,03449 0,03632 0,03858 0,04050 

Jawa Barat 0,00041 0,00041 0,00041 0,00041 0,00042 0,16095 0,16571 0,17122 0,17673 0,18232 

Kalimantan Tengah 0,00041 0,00041 0,00041 0,00041 0,00042 0,00230 0,00247 0,00265 0,00287 0,00310 

Sulawesi Utara 0,00041 0,00041 0,00041 0,00041 0,00042 0,02461 0,02613 0,02799 0,02972 0,03151 

Papua Tengah 0,00041 0,00041 0,00041 0,00041 0,00042 0,00202 0,00205 0,00206 0,00216 0,00226 

Jawa Timur 0,00041 0,00041 0,00041 0,00041 0,00042 0,14705 0,15484 0,16228 0,17034 0,17876 

Kalimantan Selatan 0,00041 0,00041 0,00041 0,00041 0,00042 0,02736 0,02982 0,03281 0,03607 0,03955 

Gorontalo 0,00041 0,00041 0,00041 0,00041 0,00042 0,01224 0,01349 0,01549 0,01749 0,01932 

Papua Pegunungan 0,00041 0,00041 0,00041 0,00041 0,00042 0,00074 0,00077 0,00077 0,00077 0,00079 

Kepulauan Bangka 

Belitung 
0,00041 0,00041 0,00041 0,00042 0,00042 0,02021 0,02129 0,02351 0,02543 0,02849 

Daerah Istimewa 

Yogyakarta 
0,00041 0,00041 0,00041 0,00041 0,00042 0,20845 0,22201 0,23494 0,24629 0,26269 

Sumatera Selatan 0,00041 0,00041 0,00041 0,00042 0,00042 0,01187 0,01263 0,01353 0,01455 0,01554 

Maluku Utara 0,00041 0,00041 0,00041 0,00041 0,00042 0,00645 0,00709 0,00744 0,00827 0,00865 

Banten 0,00041 0,00041 0,00041 0,00041 0,00042 0,18008 0,18307 0,18585 0,18864 0,19163 

Lampung 0,00041 0,00041 0,00041 0,00041 0,00042 0,04864 0,05186 0,05558 0,05928 0,06354 

Sulawesi Barat 0,00041 0,00041 0,00041 0,00041 0,00042 0,00718 0,00820 0,00904 0,00959 0,01055 

DKI Jakarta 0,00041 0,00041 0,00041 0,00041 0,00042 0,94825 0,95129 0,95282 0,95282 0,95282 

Jawa Tengah 0,00041 0,00041 0,00041 0,00041 0,00042 0,18193 0,19196 0,20189 0,21140 0,22078 

Kalimantan Utara 0,00041 0,00041 0,00041 0,00041 0,00042 0,00161 0,00170 0,00181 0,00190 0,00204 

Nusa Tenggara Barat 0,00041 0,00041 0,00041 0,00041 0,00042 0,05474 0,05814 0,06109 0,06450 0,06791 

Papua 0,00041 0,00041 0,00041 0,00041 0,00042 0,00125 0,00133 0,00142 0,00153 0,00163 

Sumatera Barat 0,00041 0,00041 0,00041 0,00042 0,00042 0,04193 0,04376 0,04550 0,04726 0,04868 

Riau 0,00041 0,00041 0,00041 0,00042 0,00042 0,01230 0,01340 0,01457 0,01600 0,01748 

Sulawesi Tenggara 0,00041 0,00041 0,00041 0,00041 0,00042 0,01054 0,01248 0,01483 0,01743 0,02078 

Kepulauan Riau 0,00041 0,00041 0,00041 0,00042 0,00042 0,04176 0,04335 0,04469 0,04590 0,04809 

Sulawesi Tengah 0,00041 0,00041 0,00041 0,00041 0,00042 0,00634 0,00688 0,00735 0,00780 0,00853 

Aceh 0,00041 0,00041 0,00041 0,00042 0,00042 0,01836 0,01905 0,02009 0,02118 0,02210 

Papua Selatan 0,00041 0,00041 0,00041 0,00041 0,00042 0,00041 0,00041 0,00041 0,00041 0,00042 

Papua Barat Daya 0,00041 0,00041 0,00041 0,00041 0,00042 0,00215 0,00231 0,00244 0,00262 0,00285 

Sulawesi Selatan 0,00041 0,00041 0,00041 0,00041 0,00042 0,02533 0,02657 0,02831 0,02966 0,03103 

Maluku 0,00041 0,00041 0,00041 0,00041 0,00042 0,00520 0,00546 0,00585 0,00630 0,00661 

Bali 0,00041 0,00041 0,00041 0,00041 0,00042 0,11763 0,12265 0,12838 0,13430 0,13843 

Papua Barat 0,00041 0,00041 0,00041 0,00041 0,00042 0,00119 0,00125 0,00130 0,00130 0,00136 
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Province 

Average of Light Intensity Average of Population 

NTL_20

19 

NTL_20

20 

NTL_20

21 

NTL_20

22 

NTL_20

23 

Pop_20

19 

Pop_20

20 

Pop_20

21 

Pop_20

22 

Pop_20

23 

Nusa Tenggara Timur 0,05 0,06 0,07 0,08 0,13 93,41 95,36 97,42 99,52 101,57 

Kalimantan Timur 0,14 0,13 0,14 0,18 0,26 24,69 25,59 26,55 27,53 28,51 

Jambi 0,22 0,19 0,19 0,25 0,41 63,68 65,36 67,09 68,88 70,66 

Kalimantan Barat 0,05 0,04 0,05 0,07 0,10 28,30 28,82 29,36 29,93 30,51 

Bengkulu 0,09 0,08 0,09 0,14 0,24 75,10 75,85 76,52 77,28 78,02 

Sumatera Utara 0,42 0,42 0,43 0,51 0,65 164,58 166,63 168,87 171,01 173,18 

Jawa Barat 2,36 2,23 2,48 2,59 3,03 1112,72 1135,72 1159,22 1184,08 1209,18 

Kalimantan Tengah 0,03 0,03 0,03 0,04 0,08 14,09 14,41 14,74 15,08 15,42 

Sulawesi Utara 0,25 0,25 0,25 0,27 0,37 148,41 151,96 155,45 159,28 163,20 

Papua Tengah 0,02 0,02 0,02 0,02 0,04 23,67 26,42 29,62 33,14 37,16 

Jawa Timur 1,93 1,91 2,11 2,32 2,73 686,25 691,58 697,09 702,65 708,19 

Kalimantan Selatan 0,25 0,23 0,24 0,29 0,42 94,22 96,37 98,50 100,84 103,25 

Gorontalo 0,16 0,16 0,17 0,20 0,26 82,42 84,33 86,26 88,24 90,22 

Papua Pegunungan 0,00 0,00 0,00 0,00 0,01 22,70 24,98 27,34 30,01 32,96 

Kepulauan Bangka 

Belitung 
0,14 0,13 0,15 0,18 0,24 73,96 76,25 78,73 81,19 83,75 

Daerah Istimewa 

Yogyakarta 
2,49 2,32 2,54 2,74 3,49 978,96 990,16 1001,28 1012,53 1023,56 

Sumatera Selatan 0,29 0,24 0,28 0,38 0,47 77,70 78,37 79,07 79,74 80,42 

Maluku Utara 0,03 0,05 0,05 0,08 0,14 33,37 34,92 36,59 38,41 40,18 

Banten 3,21 3,07 3,23 3,51 4,02 1145,29 1177,30 1211,84 1246,51 1283,87 

Lampung 0,63 0,53 0,64 0,70 0,88 209,62 212,73 215,97 219,22 222,46 

Sulawesi Barat 0,03 0,03 0,03 0,05 0,08 72,36 75,14 78,10 81,19 84,35 

DKI Jakarta 37,17 33,71 33,60 35,60 38,59 
13148,8

3 

13337,3

0 

13522,9

1 

13714,6

8 

13912,0

0 

Jawa Tengah 1,79 1,69 1,91 2,16 2,61 817,67 821,54 824,81 828,92 832,57 

Kalimantan Utara 0,03 0,02 0,02 0,04 0,10 8,42 8,85 9,32 9,81 10,32 

Nusa Tenggara Barat 0,33 0,31 0,36 0,40 0,49 207,50 210,98 214,62 218,09 221,46 

Papua 0,02 0,02 0,02 0,03 0,04 10,07 10,59 11,17 11,78 12,40 

Sumatera Barat 0,20 0,18 0,20 0,24 0,33 106,08 107,52 109,04 110,51 112,04 

Riau 0,29 0,25 0,25 0,29 0,42 66,79 69,56 72,50 75,49 78,61 

Sulawesi Tenggara 0,08 0,08 0,10 0,13 0,18 61,44 63,37 65,44 67,63 69,79 

Kepulauan Riau 0,87 0,87 0,93 1,13 1,28 219,88 232,14 245,71 260,09 274,51 

Sulawesi Tengah 0,08 0,07 0,08 0,12 0,17 41,08 42,06 43,10 44,20 45,25 

Aceh 0,21 0,22 0,21 0,25 0,34 69,43 69,99 70,50 71,13 71,77 

Papua Selatan 0,00 0,00 0,00 0,00 0,01 4,34 4,65 5,02 5,40 5,78 

Papua Barat Daya 0,03 0,03 0,03 0,03 0,04 13,69 14,77 15,86 17,11 18,39 

Sulawesi Selatan 0,28 0,24 0,28 0,33 0,45 165,27 167,71 170,28 172,88 175,53 

Maluku 0,02 0,02 0,02 0,03 0,05 31,61 32,61 33,82 34,98 36,13 

Bali 1,45 1,25 1,36 1,60 1,97 645,09 660,31 676,61 692,51 709,38 

Papua Barat 0,02 0,02 0,03 0,03 0,05 6,57 6,92 7,36 7,78 8,24 

 

Appendix B (Python Script) 

 
# -*- coding: utf-8 -*- 

"""Energy Efficiency Revision.ipynb 

 

import pandas as pd 

 

# Load the Excel file 

file_path = '/content/Zonal Provinsi.xlsx' 

data = pd.read_excel(file_path) 
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# Display the first few rows of the dataframe and the column names 

data.head(), data.columns 

 

import seaborn as sns 

import matplotlib.pyplot as plt 

 

# Compute correlation for each year 

correlation_2019 = data[['CO2_2019', 'BuiltUp_2019', 'NTL_2019', 'Pop_2019']].corr() 

correlation_2020 = data[['CO2_2020', 'BuiltUp_2020', 'NTL_2020', 'Pop_2020']].corr() 

correlation_2021 = data[['CO2_2021', 'BuiltUp_2021', 'NTL_2021', 'Pop_2021']].corr() 

correlation_2022 = data[['CO2_2022', 'BuiltUp_2022', 'NTL_2022', 'Pop_2022']].corr() 

correlation_2023 = data[['CO2_2023', 'BuiltUp_2023', 'NTL_2023', 'Pop_2023']].corr() 

 

# Visualize correlation matrices for each year using heatmap 

fig, ax = plt.subplots(1, 5, figsize=(25, 5), sharey=True) 

 

sns.heatmap(correlation_2019, annot=True, fmt=".2f", cmap='coolwarm', ax=ax[0]) 

ax[0].set_title('Correlation 2019') 

ax[0].set_yticklabels(ax[0].get_yticklabels(), rotation=0) 

 

sns.heatmap(correlation_2020, annot=True, fmt=".2f", cmap='coolwarm', ax=ax[1]) 

ax[1].set_title('Correlation 2020') 

ax[1].set_yticklabels(ax[1].get_yticklabels(), rotation=0) 

 

sns.heatmap(correlation_2021, annot=True, fmt=".2f", cmap='coolwarm', ax=ax[2]) 

ax[2].set_title('Correlation 2021') 

ax[2].set_yticklabels(ax[2].get_yticklabels(), rotation=0) 

 

sns.heatmap(correlation_2022, annot=True, fmt=".2f", cmap='coolwarm', ax=ax[3]) 

ax[3].set_title('Correlation 2022') 

ax[3].set_yticklabels(ax[3].get_yticklabels(), rotation=0) 

 

sns.heatmap(correlation_2023, annot=True, fmt=".2f", cmap='coolwarm', ax=ax[4]) 

ax[4].set_title('Correlation 2023') 

ax[4].set_yticklabels(ax[4].get_yticklabels(), rotation=0) 

 

plt.tight_layout() 

plt.show() 

 

# Save the heatmap as a PNG file 

heatmap_path = "/content/CO2_correlations_2019_to_2023.png" 

fig.savefig(heatmap_path) 

 

heatmap_path 

 

# Prepare data for plotting the trends over the years 

years = ['2019', '2020', '2021', '2022', '2023'] 

co2_columns = [f'CO2_{year}' for year in years] 

builtup_columns = [f'BuiltUp_{year}' for year in years] 

ntl_columns = [f'NTL_{year}' for year in years] 

pop_columns = [f'Pop_{year}' for year in years] 

 

# Calculate mean values for each variable over the years 

mean_co2 = data[co2_columns].mean() 

mean_builtup = data[builtup_columns].mean() 

mean_ntl = data[ntl_columns].mean() 

mean_pop = data[pop_columns].mean() 

 

# Re-running the plotting code with a command to save the figure as a PNG file 
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fig, axs = plt.subplots(4, 1, figsize=(10, 15)) 

 

# CO2 Emissions 

axs[0].plot(years, mean_co2, marker='o', linestyle='-') 

axs[0].set_title('Average CO2 Emissions (2019-2023)') 

axs[0].set_ylabel('CO2 Emissions') 

axs[0].grid(True) 

 

# Built-Up Areas 

axs[1].plot(years, mean_builtup, marker='o', color='orange', linestyle='-') 

axs[1].set_title('Average Built-Up Areas (2019-2023)') 

axs[1].set_ylabel('Built-Up Area') 

axs[1].grid(True) 

 

# Night-time Lights 

axs[2].plot(years, mean_ntl, marker='o', color='green', linestyle='-') 

axs[2].set_title('Average Night-time Light (NTL) Intensity (2019-2023)') 

axs[2].set_ylabel('NTL Intensity') 

axs[2].grid(True) 

 

# Population 

axs[3].plot(years, mean_pop, marker='o', color='red', linestyle='-') 

axs[3].set_title('Average Population (2019-2023)') 

axs[3].set_ylabel('Population') 

axs[3].grid(True) 

 

# Layout adjustment 

plt.tight_layout() 

 

# Save the figure 

trends_png_path = "/content/Average_Trends_2019_to_2023.png" 

fig.savefig(trends_png_path) 

 

# Show the plot 

plt.show() 

 

trends_png_path 

 

from sklearn.model_selection import train_test_split 

 

# Prepare features and target 

# Features from 2019 to 2022 (excluding CO2_2023) 

features_columns = ['BuiltUp_2019', 'NTL_2019', 'Pop_2019', 

                    'BuiltUp_2020', 'NTL_2020', 'Pop_2020', 

                    'BuiltUp_2021', 'NTL_2021', 'Pop_2021', 

                    'BuiltUp_2022', 'NTL_2022', 'Pop_2022'] 

target_column = 'CO2_2023' 

 

X = data[features_columns] 

y = data[target_column] 

 

# Splitting the dataset into training and testing sets 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

 

# Checking the shape of the training and testing sets 

X_train.shape, X_test.shape, y_train.shape, y_test.shape 

 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.model_selection import cross_val_score 

import numpy as np 
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# Train the Random Forest model 

rf_model = RandomForestRegressor(n_estimators=100, random_state=42) 

rf_model.fit(X_train, y_train) 

 

# Perform cross-validation 

rf_scores = cross_val_score(rf_model, X_train, y_train, cv=5, scoring='neg_mean_squared_error') 

rf_rmse_scores = np.sqrt(-rf_scores) 

 

# Calculate mean and standard deviation of the RMSE scores 

rf_rmse_mean = np.mean(rf_rmse_scores) 

rf_rmse_std = np.std(rf_rmse_scores) 

 

rf_rmse_mean, rf_rmse_std 

 

from sklearn.svm import SVR 

 

# Train the Support Vector Machine model 

svm_model = SVR(kernel='rbf') 

svm_model.fit(X_train, y_train) 

 

# Perform cross-validation 

svm_scores = cross_val_score(svm_model, X_train, y_train, cv=5, scoring='neg_mean_squared_error') 

svm_rmse_scores = np.sqrt(-svm_scores) 

 

# Calculate mean and standard deviation of the RMSE scores 

svm_rmse_mean = np.mean(svm_rmse_scores) 

svm_rmse_std = np.std(svm_rmse_scores) 

 

svm_rmse_mean, svm_rmse_std 

 

from sklearn.neural_network import MLPRegressor 

 

# Train the Artificial Neural Network model 

ann_model = MLPRegressor(hidden_layer_sizes=(100,), activation='relu', solver='adam', 

                         max_iter=500, random_state=42) 

ann_model.fit(X_train, y_train) 

 

# Perform cross-validation 

ann_scores = cross_val_score(ann_model, X_train, y_train, cv=5, scoring='neg_mean_squared_error') 

ann_rmse_scores = np.sqrt(-ann_scores) 

 

# Calculate mean and standard deviation of the RMSE scores 

ann_rmse_mean = np.mean(ann_rmse_scores) 

ann_rmse_std = np.std(ann_rmse_scores) 

 

ann_rmse_mean, ann_rmse_std 

 

# Calculate the annual growth rate for each feature 

growth_rates = {} 

 

# Calculating growth rate as (value_end / value_start) ** (1 / years) - 1 

for feature in ['BuiltUp', 'NTL', 'Pop']: 

    start_value = data[f'{feature}_2019'] 

    end_value = data[f'{feature}_2023'] 

    years = 2023 - 2019 

    growth_rate = (end_value / start_value) ** (1 / years) - 1 

    growth_rates[feature] = growth_rate 

 

# Calculate future values for each year 
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future_years = [2025, 2030, 2035, 2040, 2045] 

future_data = pd.DataFrame({'Provinsi': data['Provinsi']}) 

 

for year in future_years: 

    years_ahead = year - 2023 

    for feature in ['BuiltUp', 'NTL', 'Pop']: 

        future_data[f'{feature}_{year}'] = data[f'{feature}_2023'] * ((1 + growth_rates[feature]) ** years_ahead) 

 

future_data.head() 

 

print(rf_model.feature_names_in_)  # Hanya berfungsi pada scikit-learn versi 1.0 ke atas 

 

# Adjust the preparation of feature projections to align correctly with the prediction years 

for year in future_years: 

    years_prior = list(range(year - 4, year))  # Last 4 years up to the target year 

    for yr in years_prior: 

        for feature in ['BuiltUp', 'NTL', 'Pop']: 

            if f'{feature}_{yr}' not in future_data.columns:  # Only calculate if not already done 

                future_data[f'{feature}_{yr}'] = data[f'{feature}_2023'] * ((1 + growth_rates[feature]) ** (yr - 2023)) 

 

# Now preparing the feature sets correctly for each future year and predict 

corrected_predictions = {'Provinsi': data['Provinsi']} 

for year in future_years: 

    years_prior = list(range(year - 4, year))  # Last 4 years up to the target year 

    feature_columns = [] 

    for yr in years_prior: 

        for feature in ['BuiltUp', 'NTL', 'Pop']: 

            feature_columns.append(f'{feature}_{yr}') 

    # Predict CO2 emissions for the year using the corresponding feature set 

    corrected_predictions[f'CO2_{year}'] = rf_model.predict(future_data[feature_columns]) 

 

# Convert corrected predictions to a DataFrame for easier visualization 

corrected_predictions_df = pd.DataFrame(corrected_predictions) 

corrected_predictions_df.head() 

 

# Save the predictions to an Excel file 

predictions_file_path = '/content/CO2_Emissions_Predictions_2025_to_2045.xlsx' 

corrected_predictions_df.to_excel(predictions_file_path, index=False) 

 

# Prepare for visualization 

import matplotlib.pyplot as plt 

 

# Plotting the predictions for each province for future years 

plt.figure(figsize=(12, 8)) 

for index, row in corrected_predictions_df.iterrows(): 

    plt.plot(future_years, row[1:], marker='o', label=row['Provinsi']) 

 

plt.title('Predicted CO2 Emissions per Province from 2025 to 2045') 

plt.xlabel('Year') 

plt.ylabel('Predicted CO2 Emissions') 

plt.legend(loc='upper right', fontsize='small') 

plt.grid(True) 

plt.show() 

 

predictions_file_path 

 

# Calculate total predicted CO2 emissions for each future year 

total_predictions = corrected_predictions_df.drop('Provinsi', axis=1).sum() 

 

# Plotting the total predicted CO2 emissions for future years 
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plt.figure(figsize=(10, 6)) 

plt.plot(total_predictions.index, total_predictions.values, marker='o', linestyle='-') 

plt.title('Total Predicted CO2 Emissions from 2025 to 2045') 

plt.xlabel('Year') 

plt.ylabel('Total Predicted CO2 Emissions') 

plt.grid(True) 

plt.show() 

 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

 

# Assuming 'corrected_predictions_df' is your DataFrame 

# If you need to load it from a file, use: corrected_predictions_df = pd.read_excel('path_to_your_file.xlsx') 

 

# Define future_years explicitly for clarity 

future_years = [2025, 2030, 2035, 2040, 2045] 

 

# Categorize trends of CO2 emissions 

categories = {'Increasing': [], 'Fluctuating/Stagnant': [], 'Decreasing': []} 

for index, row in corrected_predictions_df.iterrows(): 

    emissions = row[1:].values  # Skip 'Provinsi' column which is the first column 

    if np.all(np.diff(emissions) > 0): 

        categories['Increasing'].append(row['Provinsi']) 

    elif np.all(np.diff(emissions) < 0): 

        categories['Decreasing'].append(row['Provinsi']) 

    else: 

        categories['Fluctuating/Stagnant'].append(row['Provinsi']) 

 

# Plotting 

plt.figure(figsize=(15, 10)) 

colors = {'Increasing': 'green', 'Fluctuating/Stagnant': 'blue', 'Decreasing': 'red'} 

for category, provinsi_list in categories.items(): 

    for provinsi in provinsi_list: 

        data_to_plot = corrected_predictions_df[corrected_predictions_df['Provinsi'] == provinsi] 

        plt.plot(future_years, data_to_plot.iloc[0, 1:], marker='o', color=colors[category], label=f"{provinsi} 

({category})") 

 

plt.title('Predicted CO2 Emissions Per Province Categorized by Trends') 

plt.xlabel('Year') 

plt.ylabel('Predicted CO2 Emissions') 

plt.xticks(future_years, future_years)  # Set x-axis ticks to be explicit years 

plt.grid(True) 

plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))  # Moving the legend to the side 

plt.tight_layout(rect=[0, 0, 0.75, 1])  # Adjust layout 

 

# Save the plot 

plt.savefig('CO2_Emissions_Trends_by_Province.png') 

plt.show() 

 

# Save the DataFrame to Excel 

corrected_predictions_df.to_excel('Corrected_CO2_Emissions_Predictions.xlsx', index=False) 

 

import pandas as pd 

import matplotlib.pyplot as plt 

 

# Assuming 'corrected_predictions_df' has been loaded or defined 

# Let's assume corrected_predictions_df has columns like 'Provinsi', 'CO2_2025', 'CO2_2030', etc. 

 

# Calculate the average increase in emissions for each province 
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average_increase = corrected_predictions_df.set_index('Provinsi').diff(axis=1).mean(axis=1) 

 

# Create a sorted DataFrame for visualization 

sorted_provinces = average_increase.sort_values(ascending=False).reset_index() 

sorted_provinces.columns = ['Provinsi', 'Average Increase'] 

 

# Plotting 

plt.figure(figsize=(12, 8)) 

plt.bar(sorted_provinces['Provinsi'], sorted_provinces['Average Increase'], color='skyblue') 

plt.xlabel('Province') 

plt.ylabel('Average Increase in CO2 Emissions') 

plt.title('Average Increase in CO2 Emissions Per Province') 

plt.xticks(rotation=90)  # Rotate the province names to make them readable 

plt.tight_layout() 

 

# Save the plot 

plt.savefig('Average_Increase_CO2_Emissions_Per_Province.png') 

plt.show() 

 

 

 

 

 

 


